
Improving SOA Applications Response Time
with Service Overload Detection∗

Valeria Cardellini
University of Roma “Tor Vergata”
cardellini@ing.uniroma2.it

Stefano Iannucci
PhD Student at University of Roma “Tor Vergata”

iannucci@ing.uniroma2.it

ABSTRACT
SOA applications are usually built by assembling third-party
software services. Even if each single service could offer a
contract stating its non-functional properties, enforcing a
monitoring policy is needed to detect services overload and
consequent contract violations. In this paper we present a
monitoring system capable of detecting service state changes.
Our experimental results, obtained with a prototype, shows
an improvement of 26% of the application response time.

1. INTRODUCTION
Service Oriented Architecture (SOA) is now a popular

paradigm for designing and developing distributed applica-
tions. Such a paradigm radically shifts the way network
applications are designed, since it carries to the extreme the
logic of reusable software components by letting software ar-
chitects easily integrate any software component into their
application. Precisely, the ease of integration led to envi-
sion a service marketplace [5], where invocations to software
components are sold and bought. However, when developing
an application by exclusively using third-party components,
a software architect must be carefully select which service to
use because a wrong choice of a single external component
may lead the entire application to fail. For this reason, each
service in the marketplace should be labeled with a vector
of quality parameters, which represents a proper contract
between the service provider and the service user and de-
fines a Service Level Agreement (SLA). In this paper, we
are interested in Service Level Objectives (SLOs), i.e., the
non-functional parameters belonging to a SLA, and specifi-
cally in the response time metric.

A service marketplace may contain several identical ser-
vices from a functional perspective, but they may differ from
a non-functional point of view. SLOs are therefore a good
starting point for a software architect to select services that
meet both its non-functional requirements and its budget,
that is, the SLA the SOA application is willing to offer to
its users. However, a number of factors may influence the
perceived performance of an external service: network over-
load, service overload, power outages may cause a service
not to fulfill its SLA. In this case, the SOA application must
be able to quickly select another service to fulfill its qual-
ity requirements, otherwise it would risk to violate its own
SLA. In other words, the SOA application must be able to

∗Poster presented at the 21st International ACM Sympo-
sium on High-Performance Parallel and Distributed Com-
puting (HPDC ’12).

monitor third-party services to detect whether SLOs are met
and, in case of contract violations, it must be able to adapt
itself to fulfill its own SLO.

Monitoring and adaptation in the SOA context have been
largely investigated in the past, e.g., [4, 1]. In this paper,
we present the experimental results we obtained by introduc-
ing an online adaptive Cusum detector [2] (a state change
detection mechanism) into MOSES, a runtime adaptation
framework for a SOA-based system [1]. We show that the
monitoring system, coupled with the Cusum detector, allows
to improve the SOA application response time by 26%.

2. SYSTEM ARCHITECTURE
MOSES is architected in a number of software compo-

nents, classified according to the MAPE reference model for
autonomic systems. In this paper, we focus only on the fol-
lowing MOSES components: (i) Adaptation Manager, (ii)
Optimization Engine, and (iii) QoS Engine. Both the Ex-
ecute and the Monitor MAPE phases are carried out in
MOSES by using a BPEL Engine which, instead of directly
calling the needed services, invokes the Adaptation Man-

ager internal component. The latter is in charge of invoking
the third-party services according to the optimal adaptation
strategy computed by the Optimization Engine and to col-
lect response times and reliability measures for each service
invocation. The Optimization Engine belongs to the MAPE
Plan macro-component and is triggered whenever the QoS

Engine detects a change in the SLO of some third-party
service. The latter belongs to the MAPE Analyze macro-
component and implements the online adaptive cumulative
sum (Cusum) algorithm for state change detection.

The online adaptive Cusum detector we implemented [2]
is made-up by an Exponential Weighted Moving Average
(EWMA) filter [3], that tracks the slow varying mean, and
by a two-sided Cusum test with varying thresholds for de-
tecting relevant state changes. We consider the tracking
EMWA filter µi = αyi+(1−α)µi−1, where µi represents the
i-th average response time computed in the current epoch
and yi represents the i-th collected response time sample in
the time series. We suppose that when a service provider
defines its SLO, it also considers a certain margin of error
to be safe in case of little overloads, network problems, and
so on. Therefore, we can safely suppose that whenever a
service provider violates its SLO, it is certainly in trouble
and thus we must be able to detect such situation as quick
as possible. So, we set α = 0.5, since such a value gives
the same importance both to the previously computed av-
erage response time and the new perceived response time.

Figure 1: Application managed by MOSES

The Cusum algorithm uses two accumulators, g+ and g−,
to detect changes on the leading edge and on the trailing
edge, respectively. They start both from 0 and then they
vary as follows: g+i = max{0, g+i−1 + yi − (µi + K+)} and

g−i = max{0, g−i−1 + (µi − K−) − yi}, where K+ (K−) is
the smallest shift we want to detect on the leading (trail-
ing) edge. In our experiments, we set it equal to 25% of
the response time stated in the SLOs of the monitored ser-
vices. A change is detected whenever g+i or g−i are greater
than a threshold H∗, which is computed with a numeri-
cal inversion of the Siegmund approximation [2]. In case
of change detection, a new epoch starts and the Optimiza-
tion Engine looks for a new service selection strategy ac-
cording to the new epoch predicted average response time:

µi =

{

µi−1 +K + g+i /N+ if g+i > H∗

µi−1 −K − g−i /N− if g−i > H∗
where N+ (N−) is

the number of samples collected from the last leading (trail-
ing) edge change.

3. EXPERIMENTAL RESULTS
We have conducted an experimental analysis using the

MOSES prototype to compare a SOA system that does not
execute any monitoring activity to a SOA system that mon-
itors the third-party services it uses and reacts to state
changes. We consider the SOA system composed of 6 state-
less tasks and defined by the workflow in Figure 1, and
assume that 4 services (with their respective SLAs) have
been identified for each task. We also suppose that, for
any given task ti, each implementing service offers the same
SLA in terms of response time and cost. Being ri,j the
response time of the j-th implementation of ti, we set ∀i
ri,1 = ri,2 = ri,3 = ri,4 = ri, so that the optimal service se-
lection turns out to be a balanced round robin. Specifically,
we set r1 = 2, r2 = 1, r3 = 1, r4 = 0.5, r5 = 2, r6 = 1.8, all
in seconds. Each service is a simple stub, without internal
logic, but its non-functional behavior conforms to the guar-
anteed levels expressed in the SLA. Specifically, its response
time is obtained by modeling the service as a M/D/m/PS
queue, which is implemented inside a Web service deployed
in a Tomcat container. and parameterized in such a way
to have an average CPU usage between 65% and 70% when
the request rate is equal to 10 req/sec. To issue requests
to the SOA application managed by MOSES and to mimic
the behavior of users that establish SLAs before accessing
the service, we have developed a workload generator. It is
based on an open system model, where users requests arrive
at mean user inter-arrival rate. Each user is characterized
by a contract duration and is subject to an admission control
carried out by the Optimization Engine [1].

The testing environment consists of 3 physical servers,
respectively hosting: (i) the Execute and Monitor macro-

components, (ii) the services and (iii) the Analyze and Plan
macro-components. A KVM virtual machine hosts the work-
load generator.

Figure 2 compares the SOA application response time
when MOSES runs without and with Monitor and Analyze
macro-components. In the first case, the average response
time is 9.727 sec with a confidence interval of 37 msec and
1.11% of rejected users, while in the second case the response
time decreases to 7.707 sec with a confidence interval of 26
msec and 4.13% of rejected users, thus obtaining a 26% im-
provement on the response time. The horizontal line repre-
sents the SLO of the running SOA application. This result
clearly shows how monitoring coupled with a state change
detector can help tracking the services load, thus obtaining
a more effective admission control on the incoming contract
requests, which in turn allows not to overload the services.

 6

 8

 10

 12

 0 30 60 90 120 150 180 210 240

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

SLO
w/o monitor

with monitor

Figure 2: Response time over time

4. CONCLUSIONS
In this paper we showed how the introduction of a mon-

itoring mechanism, together with an effective state change
detector, can improve the performance of a SOA applica-
tion. Our results improved the response time by 26%, but
this value could be even greater because our test did not
take into account the possibility for third-party services to
be invoked by users external to our system, as in a real case.
In future work, we plan to evaluate the system when the
services are subject to an external noise.

5. REFERENCES
[1] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci,

F. Lo Presti, and R. Mirandola. MOSES: a framework
for QoS driven runtime adaptation of service-oriented
systems. IEEE Trans. Softw. Eng., 2012. to appear.

[2] S. Casolari, S. Tosi, and F. Lo Presti. An adaptive
model for online detection of relevant state changes in
internet-based systems. Perform. Eval., 69(5), 2012.

[3] D. C. Montgomery. Introduction to Statistical Quality

Control. Wiley, 2008.

[4] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive
monitoring and service adaptation for ws-bpel. In Proc.

WWW ’08, pages 815–824, 2008.

[5] E. D. Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou,
and K. Pohl. A journey to highly dynamic, self-adaptive
service-based applications. Autom. Softw. Eng., 2008.

