
On-DemandBuffersForLargeDataStreamsIn
HighPerformanceComputingClusters

Philip Pum, Robert Kolmhofer
S1010304010@students.fh-hagenberg.at, Robert.Kolmhofer@fh-hagenberg.at

Problem
Computationally expensive algorithms can quickly become bottlenecks in data-intensive high per-
formance computing applications. When using realtime analysis of continuous data streams these
bottlenecks can lead to significant delays and eventual data loss. This paper presents a framework
for temporary, high performance storage on commodity hardware.

Storage Framework

The CuteforceAnalyzer is a parallel computing system for
the implementation of cryptoanalytic algorithms, devel-
oped at the University of Applied Sciences Upper Austria. It
is designed for realtime analysis of different types of data
streams like observation of encrypted network traffic or radio
communications. The decryption and interpretation of net-
work streams is not a trivial task and involves a significant
amount of computing power. At peak times computing nodes
can become unable to cope with heavy workloads caused by
increased network traffic.

Hardware

» InfiniBand HCA (40 GBit/s)

» Two RAID Controllers (Mega-RAID SAS 9260-4i)

» Eight Solid State Drives (OCZ VERTEX 3 120 GB)

Initial tests have shown that a single RAID controller can not
handle more than four SSDs before hitting its performance
limits.

Filesystem
Storing a continuous stream of data
is equivalent to a sequential write
access on disk. Allocated blocks are
marked in bitmaps and stored in
FIFO queues.

Framework
The adjoining figure illustrates a sample data flow
between two computing nodes and a single stor-
age node (SN ). The input node (IN ) sends data
to the output node (ON ) which in turn acknowl-
edges the reception. The second data transmission
from IN to ON can not be completed since the
output node can not process any additional data.
When the process queue of the output node is full
a command is sent to SN requesting a new stream
buffer. The identifier for the newly created stream
buffer is sent back to ON and passed on to the in-
put node along with a status message informing IN
that ON can not process any further information.
Any subsequent data packages are sent from IN
to the storage node for buffering. In addition ON
starts polling for packets from SN until the data
queue on SN is empty and the buffer is deleted.
Finally, ON informs IN that further data can be
sent directly to ON again.

Results
Storage
The setup allows a single node to write up to
3 GiB per second and read up to 3.3 GiB
per second during sequential disk access (with-
out file system).

32 64 128 256 512 1024 2048 4096 8192 16384

Record Size [KiB]
105

106

107

T
h

ro
u

g
h

p
u

t
[K

iB
/s

]

seq. read

seq. write

Buffer
The following figure shows performance results
for buffering a single stream between two
nodes. A random sample stream was gener-
ated on an input node and sent to the storage
node. Simultaneously, the output node periodi-
cally polled for available data packets. The per-
formance test has been conducted several times
for different block sizes on the storage node.
It is shown that, for large block sizes, a con-
tinuous stream can be buffered with up to 2.1
GiB/s.

1 2 3 4 5
Block Size [MB]

1400

1600

1800

2000

2200

2400

2600

T
h
ro
u
g
h
p
u
t
[M

B
/s
]

Contact Information
Philip Pum

Department of Secure Information Systems,
University of Applied Sciences Upper Austria

Softwarepark 11, Hagenberg, Austria
S1010304010@students.fh-hagenberg.at

http://tinyurl.com/cuteforce

Funding


