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Introduction

Motivation: Hardware asymmetry should be handled 
transparently to the programmer with the goal to 
achieve code portability and performance 
enhancement simultaneously. Portability with 
enhancement enables speedup driven code migration, 
empowering the scheduler to realize higher-level 
efficiency and performance goals.

Prototype platform
A shared-ISA asymmetric platform on an FPGA using 
configurable Microblaze soft-cores in two different 
configurations:
● A minimal core type, implementing the basic ISA

● A PE core type, configured to include additional 
hardware units that extend the basic ISA with PE 
instructions

Code compiled for the baseline ISA is portable across 
both core types but lacks performance enhancements 
whereas code compiled for the PE core achieves better 
performance at the cost of portability.

Our contributions:
● A dynamic binary rewriting method, implemented 

as an OS service, which enables code portability 
with performance enhancement and allows code 
migration among cores with different performance 
capabilities.

● An evaluation of rewriting on our FPGA hardware 
using benchmarks from the SPEC CPU2006 and 
Rodinia benchmark suites.

● A case study of multiprogram workloads where we 
devise a scheduling policy, relying on thread 
migrations, to minimize a workload’s average 
turnaround time.

Dynamic binary rewriting and migration
Application code is required to be initially compiled for the baseline 
ISA. Binary rewriting is invoked dynamically, as an OS service, to 
rewrite thread code:
● On thread creation, when a thread is scheduled to run on a PE core 
● On thread migration, provided the thread is migrating to different 

core type
The rewriter needs no other input than the binary itself and the target 
processor. At thread creation, we build the thread's call graph to identify 
executable code.  Patching for execution on a PE core involves 
identifying calls to SW emulation routines and instruction pattern, 
replacing them with equivalent PE, hardware instructions and 
performing only intra-procedural relocations with re-linking to remove 
superfluous nops. De-patching, when migrating to a baseline core, 
restores a thread's code by reversing modifications done.

Shared-ISA asymmetric, multicore architectures 
address both issues of programmability and 
performance customization, observed in current 
asymmetric designs of single-ISA and disjoint ISA 
platforms. 

In shared-ISA architectures, the system consists of 
baseline and performance enhanced (PE) cores, 
implementing overlapping ISAs. Higher performance 
is achievable by PE instructions while also there is 
some degree of binary compatibility regarding 
baseline instructions.

We devise a scheduling policy to reduce a multiprogram workload's 
average turnaround time following the observation that certain threads 
benefit more when executing on a PE core. Policy implementation relies 
on:
● Online profiling to identify execution hotspots
● Speedup estimation, approximating thread speedup
● Thread migration, enabled by binary rewriting
After a sampling period, threads with higher speedup estimate migrate to 
PE cores, while lower speedup are swapped to baseline cores.

Evaluation
Single program measurements
We measure execution time for a number of SPEC CPU2006 and 
Rodinia benchmarks, in three different modes:
● Baseline: code is compiled for the baseline ISA executed on a baseline 

core
● Rewriting: code is compiled for the baseline ISA but executed on a PE 

core,  thus patched by the rewriter to make use of PE instructions
● Static: code is compiled statically for the PE ISA executing to a PE 

core being non-portable but performance enhanced
We plot speedup obtained by rewriting and statically targeted code, 
denoted as static, against baseline. We denote rewr as the speedup value 
obtained omitting rewriting overhead, whereas rewr+ohd denotes the 
(lower) speedup when including overhead. Benchmarks are categorized 
in three different classes according to speedup achieved: high, medium 
and low.

Multi-program measurements
We implement an octo-core Microblaze configuration, fully-subscribed 
when deploying multi-program workloads. There are three types of 
workloads consisting of benchmarks belonging to different speedup 
classes: high-low, high-med and med-low.
The plot shows the average normalized turnaround time for each of 
those workloads in the following configurations:
● BASE is the lower performance bound: all cores are baseline ones
● UNF, MIG and ORAC have heterogeneous hardware of four PE and 

four baseline cores where initial thread mapping and migration ability 
vary

● PE-REWR and PE-STATIC have all PE cores. In PE-REWR 
benchmarks are rewritten for PE instructions, while for PE-STATIC 
code is statically targeted

Conclusions and future work

Conclusions
● Binary rewriting is a feasible method for enabling portability and 

performance enhancement at the same time
● Rewritten code perform closely to slightly worse compared with non-

portable, statically targeted code for PE instructions
● Rewriting enables migrations which empower the scheduler to 

achieve better thread-to-core mappings, subject to higher level goals, 
as our multi-program case study shows for minimizing a workload's 
average turnaround time

Future work
● Augment binary rewriting with more complex ISA and architectural 

state transformations
● Explore binary rewriting techniques for other micro-architectural 

asymmetries, either ISA-transparent or ISA-intrusive
● Investigate runtime profiling, estimation methods and scheduling 

policies for shared-ISA asymmetric platforms
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