

Dynamic Binary Rewriting and Migration for Shared-ISA
Asymmetric processors

Giorgis Georgakoudis Spyros Lalis Dimitrios S. Nikolopoulos

University of Thessaly University of Thessaly Queen's University of Belfast

ggeorgakoudis@gmail.com lalis@inf.uth.gr d.nikolopoulos@qub.ac.uk

Introduction

Motivation: Hardware asymmetry should be handled
transparently to the programmer with the goal to
achieve code portability and performance
enhancement simultaneously. Portability with
enhancement enables speedup driven code migration,
empowering the scheduler to realize higher-level
efficiency and performance goals.

Prototype platform
A shared-ISA asymmetric platform on an FPGA using
configurable Microblaze soft-cores in two different
configurations:
● A minimal core type, implementing the basic ISA

● A PE core type, configured to include additional
hardware units that extend the basic ISA with PE
instructions

Code compiled for the baseline ISA is portable across
both core types but lacks performance enhancements
whereas code compiled for the PE core achieves better
performance at the cost of portability.

Our contributions:
● A dynamic binary rewriting method, implemented

as an OS service, which enables code portability
with performance enhancement and allows code
migration among cores with different performance
capabilities.

● An evaluation of rewriting on our FPGA hardware
using benchmarks from the SPEC CPU2006 and
Rodinia benchmark suites.

● A case study of multiprogram workloads where we
devise a scheduling policy, relying on thread
migrations, to minimize a workload’s average
turnaround time.

Dynamic binary rewriting and migration
Application code is required to be initially compiled for the baseline
ISA. Binary rewriting is invoked dynamically, as an OS service, to
rewrite thread code:
● On thread creation, when a thread is scheduled to run on a PE core
● On thread migration, provided the thread is migrating to different

core type
The rewriter needs no other input than the binary itself and the target
processor. At thread creation, we build the thread's call graph to identify
executable code. Patching for execution on a PE core involves
identifying calls to SW emulation routines and instruction pattern,
replacing them with equivalent PE, hardware instructions and
performing only intra-procedural relocations with re-linking to remove
superfluous nops. De-patching, when migrating to a baseline core,
restores a thread's code by reversing modifications done.

Shared-ISA asymmetric, multicore architectures
address both issues of programmability and
performance customization, observed in current
asymmetric designs of single-ISA and disjoint ISA
platforms.

In shared-ISA architectures, the system consists of
baseline and performance enhanced (PE) cores,
implementing overlapping ISAs. Higher performance
is achievable by PE instructions while also there is
some degree of binary compatibility regarding
baseline instructions.

We devise a scheduling policy to reduce a multiprogram workload's
average turnaround time following the observation that certain threads
benefit more when executing on a PE core. Policy implementation relies
on:
● Online profiling to identify execution hotspots
● Speedup estimation, approximating thread speedup
● Thread migration, enabled by binary rewriting
After a sampling period, threads with higher speedup estimate migrate to
PE cores, while lower speedup are swapped to baseline cores.

Evaluation
Single program measurements
We measure execution time for a number of SPEC CPU2006 and
Rodinia benchmarks, in three different modes:
● Baseline: code is compiled for the baseline ISA executed on a baseline

core
● Rewriting: code is compiled for the baseline ISA but executed on a PE

core, thus patched by the rewriter to make use of PE instructions
● Static: code is compiled statically for the PE ISA executing to a PE

core being non-portable but performance enhanced
We plot speedup obtained by rewriting and statically targeted code,
denoted as static, against baseline. We denote rewr as the speedup value
obtained omitting rewriting overhead, whereas rewr+ohd denotes the
(lower) speedup when including overhead. Benchmarks are categorized
in three different classes according to speedup achieved: high, medium
and low.

Multi-program measurements
We implement an octo-core Microblaze configuration, fully-subscribed
when deploying multi-program workloads. There are three types of
workloads consisting of benchmarks belonging to different speedup
classes: high-low, high-med and med-low.
The plot shows the average normalized turnaround time for each of
those workloads in the following configurations:
● BASE is the lower performance bound: all cores are baseline ones
● UNF, MIG and ORAC have heterogeneous hardware of four PE and

four baseline cores where initial thread mapping and migration ability
vary

● PE-REWR and PE-STATIC have all PE cores. In PE-REWR
benchmarks are rewritten for PE instructions, while for PE-STATIC
code is statically targeted

Conclusions and future work

Conclusions
● Binary rewriting is a feasible method for enabling portability and

performance enhancement at the same time
● Rewritten code perform closely to slightly worse compared with non-

portable, statically targeted code for PE instructions
● Rewriting enables migrations which empower the scheduler to

achieve better thread-to-core mappings, subject to higher level goals,
as our multi-program case study shows for minimizing a workload's
average turnaround time

Future work
● Augment binary rewriting with more complex ISA and architectural

state transformations
● Explore binary rewriting techniques for other micro-architectural

asymmetries, either ISA-transparent or ISA-intrusive
● Investigate runtime profiling, estimation methods and scheduling

policies for shared-ISA asymmetric platforms

Fig. 1 Baseline ISA is a subset of PE ISA

Fig. 5 Speedup vs. baseline of rewritten and statically targeted code

(a) high (b) medium

(c) low

Fig. 6 ANTT for various modes

1

2

3 4

5

Fig. 2 Baseline core Fig. 3 Performance enhanced core

This work has been partially supported by the European Commission
under the I-CORES project (FP7 MCF-IRG Contract #224759)

	Slide 1

